Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Jian-Wei Tong, Li-Fang Ma, Deng-Ke Cao, Yi-Zhi Li and Li-Min Zheng*

Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China

Correspondence e-mail: Imzheng@nju.edu.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.061$
$w R$ factor $=0.161$
Data-to-parameter ratio $=13.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
[(1H-Benzimidazol-2-ylmethyl)iminodimethylene]diphosphonic acid dihydrate

The title compound, $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{O}_{6} \mathrm{~N}_{3} \mathrm{P}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, contains two phosphonic acid groups and one benzimidazole group connected by an $\mathrm{N}\left(\mathrm{CH}_{2}-\right)_{3}$ group. One of the benzimidazole N atoms and two phosphonic acid O atoms of each PO_{3} group are protonated. Extensive hydrogen-bonding interactions, as well as $\pi-\pi$ stacking interactions, are found between the molecules, leading to a three-dimensional supramolecular network structure.

Comment

Metal phosphonates are organic-inorganic hybrid materials that are important because of their potential applications in ion exchange, sensors, catalysis and molecular recognition (Clearfield, 1998). A number of multifunctional phosphonic acids have been used for building novel structures, ranging from zero-dimensional molecules to three-dimensional frameworks. As a potential multidentate ligand, [(1H-benzi-midazol-2-ylmethyl)iminodimethylene]diphosphonic acid (bibmpH ${ }_{4}$) is potentially able to form various structures with metal ions. Five isomorphous compounds with chain structures have been obtained through hydrothermal reactions of bibmpH 4 and metal sources (Cao et al., 2006). During our efforts to synthesize a manganese compound by direct reaction of bibmpH 4_{4} with $\mathrm{Mn}\left(\mathrm{ClO}_{4}\right)_{2}$ in aqueous solution, however, excellent quality single crystals of the unreacted acid were obtained as the title dihydrate, (I).

(I)

Fig. 1 shows the structure of compound (I) with the atomic labelling scheme. Of the three phosphonate O atoms connected to each of P 1 and P 2 , atoms $\mathrm{O} 2, \mathrm{O} 3, \mathrm{O} 5$ and O 6 are protonated. Hence, the $\mathrm{P} 1-\mathrm{O} 2, \mathrm{P} 1-\mathrm{O} 3, \mathrm{P} 2-\mathrm{O} 5$ and $\mathrm{P} 2-\mathrm{O} 6$ distances of 1.564 (3), 1.546 (3), 1.537 (3) and 1.567 (3) \AA, respectively, are much longer than the other $\mathrm{P} 1-\mathrm{O} 1$ [1.509 (3) \AA] and $\mathrm{P} 2-\mathrm{O} 4$ [1.507 (3) Å] distances. The $\mathrm{P}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ distances are normal. The CPO_{3} tetrahedra are slightly distorted, with the $\mathrm{O}-\mathrm{P}-\mathrm{O}(\mathrm{C})$ angles ranging from 103.53 (15) to 116.84 (17) ${ }^{\circ}$.

Neighbouring molecules are connected by very strong hydrogen bonds (Table 1) between phosphonate atoms O2

Received 22 April 2006 Accepted 26 May 2006

Figure 1
A view of the molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level. C-bound H atoms have been omitted for clarity.

Figure 2

The crystal packing, viewed along the a axis. C-bound H atoms have been omitted for clarity. Dashed lines indicate hydrogen bonds.
and O6, forming an infinite chain along the b axis. These chains are held together through hydrogen bonds between atoms N 2 and O 1 , and between atom $\mathrm{O} 2 W$ and the phosphonate O atoms, forming a layer in the $a b$ plane.

Neighbouring layers are linked by hydrogen bonds between atoms $\mathrm{O} 1 W$ and O 4 from different layers. $\pi-\pi$ stacking interactions are also found between these layers along the a axis, with centroid-to-centroid distances between adjacent benzene rings of 3.627 (2) and 3.955 (2) \AA. Therefore, a threedimensional supramolecular network is formed with onedimensional channels generated along the a axis. The solvent water molecules O 1 W and O 2 W reside within the channels.

Experimental

(Benzimidazol-2-ylmethyl)iminobis(methylenephosphonic acid) (bibmpH $)_{4}$) was synthesized according to the literature procedure of Yoshikawa (1995). A mixture of bibmpH ${ }_{4}(0.081 \mathrm{~g}, 0.25 \mathrm{mmol})$, manganese(II) perchlorate $(0.0905 \mathrm{~g}, 0.25 \mathrm{mmol})$ and water $(10 \mathrm{ml})$ was stirred at room temperature for 10 min . The filtrate was kept at room temperature for 2 d , after which colourless block crystals of (I) were collected. Analysis, calculated for (I): C 32.70, H 4.09, N 11.44\%; found: C32.21, H 4.94, N 11.23\%.

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{P}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=371.22$
Monoclinic, $P 2_{1} / c$
$Z=4$
$D_{x}=1.599 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.33 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, colourless
$0.32 \times 0.28 \times 0.26 \mathrm{~mm}$
$c=18.935$ (2) A
$V=1542.2(3) \AA^{3}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\text {min }}=0.91, T_{\text {max }}=0.92$
8348 measured reflections 3025 independent reflections 2151 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.052$
$\theta_{\text {max }}=26.0^{\circ}$

Refinement

Refinement on F^{2}
H -atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.061$
$w R\left(F^{2}\right)=0.161$
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.1074 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$S=0.95$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.66 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.64 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2 W-\mathrm{H} 2 W B \cdots \mathrm{O} 1 W^{\mathrm{i}}$	0.80 (7)	2.28 (7)	3.051 (5)	163 (6)
$\mathrm{O} 1 W-\mathrm{H} 1 W A \cdots \mathrm{O} 4^{\text {ii }}$	0.85 (6)	1.98 (6)	2.823 (4)	173 (5)
$\mathrm{O} 2 W-\mathrm{H} 2 W A \cdots \mathrm{O} 4^{\text {iii }}$	0.87 (6)	1.90 (7)	2.722 (5)	158 (6)
$\mathrm{O} 1 W-\mathrm{H} 1 W B \cdots \mathrm{O} 4^{\text {iii }}$	0.80 (6)	2.20 (6)	2.965 (4)	159 (5)
$\mathrm{O} 2-\mathrm{H} 2 A \cdots \mathrm{O} 6^{\text {iii }}$	0.88 (5)	1.56 (5)	2.359 (4)	148 (4)
$\mathrm{O} 5-\mathrm{H} 5 A \cdots \mathrm{O} 2 W^{\text {iv }}$	0.82 (5)	2.51 (5)	3.302 (5)	162 (5)
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{C} \cdots \mathrm{O} 1^{\text {iv }}$	0.86	1.93	2.770 (4)	165

All H atoms on C and N atoms were placed in calculated positions and included as part of a riding model, with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ of the parent atom. $\mathrm{O}-$ bound H atoms were refined freely.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by the National Natural Science Foundation of China (grant No. 20325103) and by a research grant from the Ministry of Chinese Education.

organic papers

References

Bruker (2000). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Cao, D.-K., Xiao, J., Li, Y.-Z., Clemente-Juan, J. M., Coronado, E. \& Zheng, L.-M. (2006). Eur. J. Inorg. Chem. 9, 1830-1837.

Clearfield, A. (1998). Prog. Inorg. Chem. 47, 371-510. Yoshikawa (1995). US Patent No. 5441945.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

